216 research outputs found

    Learning from Millions of 3D Scans for Large-scale 3D Face Recognition

    Full text link
    Deep networks trained on millions of facial images are believed to be closely approaching human-level performance in face recognition. However, open world face recognition still remains a challenge. Although, 3D face recognition has an inherent edge over its 2D counterpart, it has not benefited from the recent developments in deep learning due to the unavailability of large training as well as large test datasets. Recognition accuracies have already saturated on existing 3D face datasets due to their small gallery sizes. Unlike 2D photographs, 3D facial scans cannot be sourced from the web causing a bottleneck in the development of deep 3D face recognition networks and datasets. In this backdrop, we propose a method for generating a large corpus of labeled 3D face identities and their multiple instances for training and a protocol for merging the most challenging existing 3D datasets for testing. We also propose the first deep CNN model designed specifically for 3D face recognition and trained on 3.1 Million 3D facial scans of 100K identities. Our test dataset comprises 1,853 identities with a single 3D scan in the gallery and another 31K scans as probes, which is several orders of magnitude larger than existing ones. Without fine tuning on this dataset, our network already outperforms state of the art face recognition by over 10%. We fine tune our network on the gallery set to perform end-to-end large scale 3D face recognition which further improves accuracy. Finally, we show the efficacy of our method for the open world face recognition problem.Comment: 11 page

    Defense against Universal Adversarial Perturbations

    Full text link
    Recent advances in Deep Learning show the existence of image-agnostic quasi-imperceptible perturbations that when applied to `any' image can fool a state-of-the-art network classifier to change its prediction about the image label. These `Universal Adversarial Perturbations' pose a serious threat to the success of Deep Learning in practice. We present the first dedicated framework to effectively defend the networks against such perturbations. Our approach learns a Perturbation Rectifying Network (PRN) as `pre-input' layers to a targeted model, such that the targeted model needs no modification. The PRN is learned from real and synthetic image-agnostic perturbations, where an efficient method to compute the latter is also proposed. A perturbation detector is separately trained on the Discrete Cosine Transform of the input-output difference of the PRN. A query image is first passed through the PRN and verified by the detector. If a perturbation is detected, the output of the PRN is used for label prediction instead of the actual image. A rigorous evaluation shows that our framework can defend the network classifiers against unseen adversarial perturbations in the real-world scenarios with up to 97.5% success rate. The PRN also generalizes well in the sense that training for one targeted network defends another network with a comparable success rate.Comment: Accepted in IEEE CVPR 201
    • …
    corecore